This presentation does not contain any proprietary, confidential, or otherwise restricted information

BIOENERGY TECHNOLOGIES OFFICE

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Agile BioFoundry – DFO with Superbrewed Foods

April 5, 2023 at 9:27 am MST Conversion Technologies

Adam Guss
Oak Ridge National Laboratory

Project overview

- Technology: Fermentation to most traditional products has a maximum carbon yield of 66%. The Superbrewed Foods technology uses an organism that co-ferments sugars and H₂, enabling a theoretical maximum carbon yield of 100%
- Challenge: Strain instability and cell-to-cell variation of an engineered isopropanol-producing strain leads to diminished performance within a bioreactor
- Primary Goal: Understand the cause and identify potential solutions to strain instability over time, leveraging ABF expertise in anaerobic microbiology and biosensor development

Approach

Technical Approach:

- Genome resequencing, proteomics, and metabolomics to understand cause of instability
- Biosensor circuit to allow selection for improved strains
- Understand and engineer strains for improved and consistent production
- Challenges: Work in anaerobic organisms is more difficult and time-consuming than aerobes; bulk measurements may not reflect the reality of individual cells
- Risks: 'omics may not reveal the cause of instability and variation
 - **Mitigation:** The biosensor approach may allow selection of improved strains with the need to first understand it
- Communication and Collaboration: This project leverages past and ongoing tool development from the Host Onboarding team within the ABF. Monthly calls are used to coordinate work

Approach – 'omics

Technical Approach:

- Sample replicate bioreactors at multiple time points, with different production phenotypes
- Sequence bulk culture and individual members of the population to look for mutations and copy number variants
- Perform proteomics and metabolomics to explore differences in enzyme levels and metabolic flux
- Use results to inform rational engineering targets

Global LC-MS/MS & targeted proteomics, whereby a complex sample is spiked with a stable isotope-labeled peptide that acts as internal standard

Single-Sample Extraction

Approach - biosensor

- Design and demonstrate an isopropanol biosensor in C. Ijungdahlii
- Modify biosensor circuit into "addiction" circuit for cellular fitness or survival
- Use this untargeted approach to identify new genetic targets

Progress and Outcomes

Technical Approach:

- We are in Q3 of the project and have run replicate bioreactors and sampled at multiple time points, targeting the different production phenotypes
- Samples were sent to ORNL for sequencing analysis, which is ongoing
- Samples were sent to PNNL for proteomics and metabolomics, which is also ongoing
- This will hopefully identify targets for genetic manipulation for improved production

Impact

Positive impacts for Superbrewed Foods (SBF)

- Generate an improved, more stable isopropanol strain
- Gain knowledge from the changes the strain undergoes during the continuous, cellretention process

Positive impacts for ABF

- First ABF sensor circuit developed for a Clostridium species and a strict anaerobe, helping guide future efforts
- Develop a set of approaches to assist in future ABF projects probing culture heterogeneity

Positive impacts for the American bioeconomy

- SBF is targeting isopropanol as a commercialization biochemical
- MixoFerm technology can be applied to any number of other biochemicals
- Successful commercialization of isopropanol will lead to other MixoFerm-based processes for other products and further grow the American bioeconomy

Summary

Approach

 Use multi-omics to better understand the cause of strain instability and loss of production over time

Technical progress

 We are currently analyzing the genetics, proteins, and metabolites from multiple fermenter runs

Impact

Potential to commercialize a process for decarbonization of isopropanol production

Quad Chart Overview

Timeline

- July 1, 2022
- June 30, 2024

	FY23 Costed	Total Award
DOE Funding		\$1,450,000
Project Cost Share *		\$370,000

Project Goal

Understand the cause of and identify potential solutions to strain instability over time, leveraging ABF expertise in anaerobic microbiology, omics, and biosensor development

End of Project Milestone

Combine biosensor circuit with engineered strain for improved and sustained production of isopropanol

Funding Mechanism **DFO**

Project Partners*

- **PNNL**
- LANL
- ORNL

Acknowledgements:

DOE Technology Manager Gayle Bentley

Project Contributors:

LANL: Ellin-Kristina Triola, Taraka Dale, Ramesh Jha

ORNL: Adam Guss, Melissa Tumen-Velasquez

PNNL: Yuqian Gao, Kristin Burnum-Johnson

Suberbrewed Food, Inc: Emily Crawford, Carrissa Wiedel

Additional Slides

Responses to Previous Reviewers' Comments

N/A: not previously reviewed at Peer Review

Publications, Patents, Presentations, Awards, and Commercialization

None to date

